Multivalent recognition of peptides by modular self-assembled receptors.
نویسندگان
چکیده
Developing nontraditional approaches to the synthesis and characterization of multivalent compounds is critical to our efforts to study and interface with biological systems and to build new noncovalent materials. This paper demonstrates a biomimetic approach to the construction of discrete, modular, multivalent receptors via molecular self-assembly in aqueous solution. Scaffolds presenting 1-3 viologen groups recruit a respective 1-3 copies of the synthetic host, cucurbit[8]uril, in a noncooperative manner and with a consistent equilibrium association constant (K(a)) value of 2 x 10(6) M(-1) per binding site. The assembled mono-, di-, and trivalent receptors bind to their cognate target peptides containing 1-3 Trp residues with K(a) values in the range 1.7 x 10(4)-4.7 x 10(6) M(-1) and in predetermined mono- or multivalent binding modes with 31-280-fold enhancements in affinity and additive enthalpies due to multivalency. The extent of valency was determined directly by measuring the visible charge-transfer absorptivity due to the viologen-indole pair. The predictable behavior of this system and its ease of synthesis and analysis make it well suited to serve as a model for multivalent binding and for the multivalent recognition of peptides by design.
منابع مشابه
Double-degradable responsive self-assembled multivalent arrays--temporary nanoscale recognition between dendrons and DNA.
This article reports self-assembling dendrons which bind DNA in a multivalent manner. The molecular design directly impacts on self-assembly which subsequently controls the way these multivalent nanostructures bind DNA--this can be simulated by multiscale modelling. Incorporation of an S-S linkage between the multivalent hydrophilic dendron and the hydrophobic units responsible for self-assembl...
متن کاملSelf-assembled multivalent carbohydrate ligands.
Materials that display multiple carbohydrate residues have gained much attention due to their potential to inhibit or modulate biological multivalent interactions. These materials can be grouped accordingly to the way they are prepared, as unimolecular or as self-assembled systems. Both systems take advantage of the fact that multivalent interactions have significantly higher binding affinity t...
متن کاملOn-bead synthesis and binding assay of chemoselectively template-assembled multivalent neoglycopeptides.
The investigation of recognition events between carbohydrates and proteins, especially the control of how spatial factors and binding avidity are correlated in, remains a great interest for glycomics. Therefore, the development of efficient methods for the rapid evaluation of new ligands such as multivalent glycoconjugates is essential for diverse diagnostic or therapeutic applications. In this...
متن کاملBioinspired self-assembled peptide nanofibers with thermostable multivalent α-helices.
The stabilization of peptide's active conformation is a critical determinant of its target binding efficiency. Here we present a structure-based self-assembly strategy for the design of nanostructures with multiple and thermostable α-helices using bioinspired peptide amphiphiles. The design principle was inspired by the oligomerization of the human immunodeficiency virus type-1 (HIV-1) Rev prot...
متن کاملSelf-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.
Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 131 6 شماره
صفحات -
تاریخ انتشار 2009